Множества государств но в финальном. Множества Элементы теории множеств

  • Дата: 14.06.2024

    Михаил Раскин

    Современная математика в качестве своего основания использует теорию множеств. Традиционно при анализе теоретико-множественных тонкостей используется аксиоматика Цермело-Френкеля с аксиомой выбора, обозначаемая ZFC. На аксиому выбора опираются доказательства наличия базиса в любом векторном пространстве и существования неизмеримого множества в математическом анализе. К сожалению, теория множеств обязана работать и со множествами, которые не описываются достаточно подробно и конкретно, чтобы мы могли себе их представить. В курсе будет рассмотрен один пример, к чему это приводит. Оказывается, ценой ослабления аксиомы выбора можно получить теорию множеств, в которой любая ограниченная функция на отрезке интегрируема по Лебегу. То, что используется аксиома выбора, в каком-то смысле, произошло исторически. Курс основан на статье Р.М. Соловэя о построении теории множеств, в которой все множества вещественных чисел измеримы.

    Михаил Раскин

    В теории множеств есть несколько известных вопросов о том, следует ли из некоторых аксиом другая аксиома (или гипотеза; аксиома - это просто гипотеза, которой пользуется подавляющее большинство). Как и в других областях математики, недоказуемость можно продемонстрировать с помощью модели, в которой верны предположения, но не верна гипотеза. Для построения одного из самых известных таких примеров, модели теории множеств, в которой есть промежуточная мощность между мощностями натурального ряда и вещественной прямой, Коэн разработал метод вынуждения.

    Иван Ященко

    При развитии теории множеств, на которой базируется вся современная математика, возникали парадоксы. Например, парадокс брадобрея, формулируемый следующим образом: «Бреет ли себя брадобрей, если он бреет тех и только тех, кто сам себя не бреет?» В брошюре рассказывается о том, как теория множеств обходится с подобными ситуациями, а также о других парадоксах, в том числе возникающих при рассмотрении аксиомы выбора. В частности, вы узнаете, как из одного апельсина сделать два. Приведены задачи, самостоятельное решение которых поможет читателю более полно разобраться в материале. Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей.

    Парадоксы являются следствием дихотомии языка и мышления, выражением глубоких диалектических (теорема Гёделя позволила проявить диалектику в процессе познания) и гносеологических трудностей, связанных с понятиями предмета и предметной области в формальной логике, множества (класса) в логике и теории множеств, с употреблением принципа абстракции, позволяющего вводить в рассмотрение новые (абстрактные) объекты (бесконечность), со способами определения абстрактных объектов в науке и т. п. Поэтому не может быть дано универсального способа устранения всех парадоксов.

    Уверены ли вы, что точно представляете себе бесконечность? Харизматичный математик Джеймс запросто убедит вас в обратном.

    Александр Буфетов

    В стандартной интерпретации гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс.

    Юрий Лебедев

    Когда у меня в руках оказалась старая картонная папка, я был уже уверен, что в ней не вырезки из газет о «царице полей» кукурузе. И совершенно не удивился тому, что моя уверенность оправдалась. В папке находились рукописи или, точнее, черновики двух статей - «Принципы семиотической термодинамики», «Отказ от исключения» - и целая пачка других, для прочтения которых потребуется еще много усилий. Ни имени автора, ни даты написания на листках не было. Вероятнее всего, папку забыл кто-то из «дикарей» прошлых лет. Не имея возможности объясниться с автором, я решил предложить вашему вниманию свой вариант расшифровки одной из этих до крайности небрежно написанных неудобочитаемым почерком статей.

    Владимир Успенский

    Если в качестве значений переменных разрешается брать только элементы носителя, язык называют элементарным языком, или языком первого порядка. Если же в качестве значений переменных разрешается брать также функции и отношения, язык называют языком второго порядка. Выразительные возможности языков первого порядка довольно ограничены. Например, на языке первого порядка можно сообщить, что носитель содержит ровно 17 элементов, но невозможно выразить его конечность. На языке второго порядка выразить конечность носителя возможно. Возникает совершенно естественное недоумение: а зачем тогда пользоваться языками первого порядка с их бедными выразительными средствами, не лучше ли пользоваться языками второго порядка?

    Михаил Раскин

    Все мы знаем, что математика доказывает импликации. Другими словами, мы доказываем не то, что какое-то утверждение верно, а то, что оно следует из принятых нами аксиом. Но при этом часто недооценивается, насколько сильно можно поменять набор аксиом. Одно из базовых понятий математики, на которых видна степень условности выбора конкретного набора аксиом – понятие множества. Сначала оно казалось совершенно очевидным. К сожалению, этот подход привёл к противоречиям. После этого стали развиваться разные способы работать со множествами не приходя к парадоксам. Понятие множества используется во многих разделах математики, из-за чего работать со множествами обычно учат постепенно, по кусочкам добавляя факты как естественные и самоочевидные основы, пока не получится теория, носящая имя ZFC. Из-за этого часто оказывается заметён под ковёр тот факт, что ZFC лишь один из возможных вариантов и что замена оснований теории множеств совсем не обязана рушить другие разделы математики. Курс будет посвящён рассказу о том, что может быть проблемой при пользовании какой-то аксиоматикой и сколь разнообразны варианты. Предварительные требования будут изменены в соответствии со знаниями и интересами аудитории; я надеюсь, что обозначения →, ∀, ∨, ∈, ∈, ∪, … всё же всем знакомы и привычны настолько, что ошибочно кажутся понятными.

    Джордана Цепелевич

    Всякая надежда на создание единой математической теории, амбициозного проекта, который был предложен математиком Давидом Гильбертом в 19 веке и продолжил существовать, поддерживаемый многими, в 20 столетии, рухнула. Основы математики были далеко не столь надежными, как того хотел бы Гильберт. А Гëдель своими теоремами ясно продемонстрировал, что любая система аксиом, какой бы обширной она ни была, уязвима для возникновения невосполнимых пробелов. Попытки же восполнить их созданием более полной системы породили бы только бóльшее количество утверждений без доказательств - так что и тут возникнет необходимость в усовершенствовании системы, и так далее до бесконечности. И случилось нечто странное: математики решили не обращать на это внимания. Они посчитали, что неполнота систем не имеет непосредственного влияния на их работу.

Определение 1. Множеством называется совокупность некоторых объектов, объединенных в одно целое по какому ‒ либо признаку.

Объекты, из которых состоит множество, называются его элементами.

Обозначаются заглавными буквами латинского алфавита: A , B , …, X , Y , …, а их элементы обозначаются соответствующими прописными буквами: a, b , …, x, y .

Определение 1.1. Множество, не содержащее ни одного элемента, называется пустым и обозначается символом Ø.

Множество можно задать перечислением и описанием.

Пример:; .

Определение 1.2. Множеством A называется подмножеством B , если каждый элемент множества A является элементом множества B . Символически это обозначают так: AB (A содержится в B ).

Определение 1.3. Два множества A и B называются равными , если они состоят из одних и тех же элементов: (A =B ).

Операции над множествами.

Определение 1.4. Объединением или суммой множеств A и B называется множество, состоящее из элементов, каждый из которых принадлежит хотя бы одному из этих множеств.

Объединение множеств обозначают AB (или A +B ). Кратко можно записать AB = .

AB = A +B

Если BA , то A +B=A

Определение 1.5. Пересечением или произведением множеств A и B называется множество, состоящее из элементов, каждый из которых принадлежит множеству A и множеству B одновременно. Пересечение множеств обозначают AB (или A ·B ). Кратко можно записать:

AB =.

AB =A ·B

Если B A , то A · B= B

Определение 1.6. Разностью множеств A и B называется множество, каждый элемент которого является элементом множества A и не является элементом множества B . Разность множеств обозначают A \B . По определению A \B = .

A \B = A B

Множества, элементами которых являются числа, называются числовыми .

Примерами числовых множеств являются:

N = - множество натуральных чисел.

Z = - множество целых чисел.

Q = - множество рациональных чисел.

R ‒ множество действительных чисел.

Множество R содержит рациональные и иррациональные числа. Всякое рациональное число выражается или конечной десятичной дробью или бесконечной периодической дробью. Так, ;… ‒ рациональные числа.

Иррациональное число выражается бесконечной непериодической десятичной дробью. Так, = 1,41421356...; = 3,14159265.... – иррациональное число.

K – множество комплексных чисел (вида Z =a + bi )

R K

Определение 1.7. Ɛ ‒ окрестностью точки x 0 называется симметричный интервал (x 0 – Ɛ; x 0 + Ɛ), содержащий точку x 0 .

В частности, если интервал (x 0 –Ɛ; x 0 +Ɛ), то выполнятся неравенство x 0 –Ɛ<x <x 0 +Ɛ, или, что то же, │x x 0 │<Ɛ. Выполнение последнего означает попадание точки x в Ɛ – окрестность точки x 0 .

Пример 1:

(2 – 0,1; 2 + 0,1) или (1,9; 2,1) – Ɛ– окрестность.

x – 2│< 0,1

–0,1<x – 2<0,1

2 –0,1<x < 2 + 0,1

1,9<x < 2,1

Пример 2:

A – множество делителей 24;

B – множество делителей 18.

Лекция 12: Основные понятия теории множеств

Рассмотрение системы как совокупности элементов дает возможность привлечь для ее математического описания аппарат теории множеств. При этом в ряде важных случаев связи между элементами удобно описываются с помощью аппарата математической логики.

Понятие множества — является одним из тех фундаментальных понятий математики, которым трудно дать точное определение, используя элементарные понятия. Поэтому ограничимся описательным объяснением понятия множества.

Множеством называется совокупность определенных вполне различаемых объектов, рассматриваемых как единое целое. Создатель теории множеств Георг Кантор давал следующее определение множества — «множество есть многое, мыслимое нами как целое».

Отдельные объекты, из которых состоит множество, называются элементами множества.

Множества принято обозначать большими буквами латинского алфавита, а элементы этих множеств — маленькими буквами латинского алфавита. Множества записываются в фигурных скобках { }.

Принято использовать следующие обозначения:

  • a ∈ X — «элемент a принадлежит множеству X»;
  • a ∉ X — «элемент a не принадлежит множеству X»;
  • ∀ — квантор произвольности, общности, обозначающий «любой», «какой бы не был», «для всех»;
  • ∃ — квантор существования: ∃y ∈ B — «существует (найдется) элемент y из множества B»;
  • ∃! — квантор существования и единственности: ∃!b ∈ C — «существует единственный элемент b из множества C»;
  • : — «такой, что; обладающий свойством»;
  • → — символ следствия, означает «влечет за собой»;
  • ⇔ — квантор эквивалентности, равносильности — «тогда и только тогда».

Множества бывают конечные и бесконечные . Множества называются конечным , если число его элементов конечно, т.е. если существует натуральное число n, являющееся числом элементов множества. А={a 1 , a 2 ,a 3 , ..., a n }. Множество называется бесконечным , если оно содержит бесконечное число элементов. B={b 1 ,b 2 ,b 3 , ...}. Например, множество букв русского алфавита — конечное множество. Множество натуральных чисел — бесконечное множество.

Число элементов в конечном множестве M называется мощностью множества M и обозначается |M|. Пустое множество — множество, не содержащее ни одного элемента — ∅. Два множества называются равными , если они состоят из одних и тех же элементов, т.е. представляют собой одно и тоже множество. Множества не равны X ≠ Y, если в Х есть элементы, не принадлежащие Y, или в Y есть элементы, не принадлежащие Х. Символ равенства множеств обладает свойствами:

  • Х=Х; — рефлексивность
  • если Х=Y, Y=X — симметричность
  • если X=Y,Y=Z, то X=Z — транзитивность.

Согласно такого определения равенства множеств мы естественно получаем, что все пустые множества равны между собой или что то же самое, что существует только одно пустое множество.

Подмножества. Отношение включения.

Множество Х является подмножеством множества Y, если любой элемент множества Х ∈ и множеству Y. Обозначается X⊆Y.

Если необходимо подчеркнуть, что Y содержит и другие элементы, кроме элементов из Х, то используют символ строгого включения ⊂: X⊂Y. Связь между символами ⊂ и ⊆ дается выражением:

X⊂Y ⇔ X⊆Y и X≠Y

Отметим некоторые свойства подмножества, вытекающие из определения:

  1. X⊆Х (рефлексивность);
  2. → X⊆Z (транзитивность);
  3. ∅ ⊆ M. Принято считать, что пустое множество является подмножеством любого множества.

Исходное множество А по отношению к его подмножествам называется полным множеством и обозначается I.

Любое подмножество А i множества А называется собственным множеством А.

Множество, состоящие из всех подмножеств данного множества Х и пустого множества ∅, называется булеаном Х и обозначается β(Х). Мощность булеана |β(Х)|=2 n .

Счетное множество — это такое множество А, все элементы которого могут быть занумерованы в последовательность (м.б. бесконечную) а 1 , а 2 , а 3 , ..., а n , ... так, чтобы при этом каждый элемент получил ишь один номер n и каждое натуральное число n было бы в качестве номера дано одному и лишь одному элементу нашего множества.

Множество, эквивалентное множеству натуральных чисел, называется счетным множеством.

Пример. Множество квадратов целых чисел 1, 4, 9, ..., n 2 представляет собой лишь подмножество множества натуральных чисел N. Множество является счетным, так как приводится во взаимно однозначные соответствия с натуральным рядом путем приписывания каждому элементу номера того числа натурального ряда, квадратом которого он является.

Существует 2 основных способа задания множеств.

  • перечислением (X={a,b}, Y={1}, Z={1,2,...,8}, M={m 1 ,m 2 ,m 3 ,..,m n });
  • описанием — указывается характерное свойства, которым обладают все элементы множества.

Множество полностью определено своими элементами.

Перечислением можно задать только конечные множества (например, множество месяцев в году). Бесконечные множества можно задать только описанием свойств его элементов (например, множество рациональных чисел можно задать описанием Q={n/m, m, n∈Z, m≠0}.

Способы задания множества описанием:

а) заданием порождающей процедуры с указанием множества (множеств), которое пробегает параметр (параметры) этой процедуры — рекурсивный, индуктивный.

X={x: x 1 =1, x 2 =1, x k+2 =x k +x k+1 , k=1,2,3,...} — мн-во чисел Фибониччи.

{мн-во элементов х, таких, что х 1 =1,х 2 =1 и произвольное х k+1 (при к=1,2,3,...) вычисляется по формуле х k+2 =х k +х k+1 } или Х=, эти множества находятся в отношении включения M⊂K, т.к. каждый элемент множества M принадлежит множеству K (Рис. 4)

Рисунок 4 - Числовой промежуток

3) A={x|x∈N∧x:2}={2,4,6,8,10,...} и B={x|x∈N∧x:3}={3,6,9,12,...}, эти два множества не находятся ни в каких отношениях A⊄B, так как во множестве А есть элемент 2, не принадлежащий множеству В

и B⊄A, т.к. во множестве В есть элемент 3, не принадлежащий множеству А.

Следовательно, данные множества не находятся ни в каких отношениях.

III. Операции и свойства операций над множествами

Опр.1. Пересечением множеств А и В называется операция, результатом которой является множество, состоящее из тех и только тех элементов, которые принадлежат и А и В одновременно.

A∩B={x|x∈A∧x∈B}

Опр.2. Объединением множеств А и В называется операция, результатом которой является множество, состоящее из тех и только тех элементов, которые принадлежат множеству А или множеству В (т.е. хотя бы одному из этих множеств).

A∪B={x|x∈A∨x∈B}

Опр.3. Разностью множеств А и В называется операция, результатом которой является множество, состоящее из тех и только тех элементов, которые принадлежат А и не принадлежат В одновременно.

А\ В ={x∈A∧x∉B}

Опр.4. Дополнением множества А до универсального множества называется множество, каждый элемент которого принадлежит универсальному и не принадлежит А.

Выражения с множествами

Из множеств, знаков операций над ними и, может быть, скобок можно составлять выражения. Например, А∩В\С.

Необходимо знать порядок выполнения операций в таких выражениях и уметь их читать.

Порядок выполнения операций

    если нет скобок, то в первую очередь выполняется дополнение до универсального множества простого множества, затем пересечение и объединение (они равноправны между собой), в последнюю очередь - разность;

    если в выражении есть скобки, то сначала выполняют операции в скобках по порядку, приведенному в пункте 1), а затем все операции за скобками.

Например, а) А∩В\С; б) А∩(В\С); в) А∩(В\С)" .

Чтение выражения начинается с результата последней операции. Например, выражение а) читается так: разность двух множеств, первое из которых пересечение множеств А и В, а второе - множество С.

Круги Эйлера

Операции над множествами и отношения между ними можно изобразить с помощью кругов Эйлера. Это специальные чертежи, на которых обычные множества изображаются кругами, универсальное множество - прямоугольником

Задача. Изобразить с помощью кругов Эйлера множество (А∪В)"∩С.

Решение. Расставим порядок выполнения операций в данном выражении: (А∪В)"∩С. Заштрихуем результаты операций согласно порядку их выполнения

Свойства операции над множествами (рис.5)

Свойства I - 8 и 1 0 - 8 0 связаны между собой гак называемым принципом двойственности:

если в любом из двух столбиков свойств поменять знаки ∩→∪, ∪→∩, ∅→U, U→∅, то получится другой столбик свойств.

IV. Разбиение множества на классы

Считают, что множество Х разбито на попарно непересекающиеся подмножества или классы, если выполнены следующие условия:

1) пересечение любых двух подмножеств пусто;

2) объединение всех подмножеств совпадает с множеством Х.

Разбиение множества на классы называют классификацией.

V. Декартово произведение множеств

Декартовым произведением множеств А и В называется множество пар, первая компонента каждой из которых принадлежит множеству А, а вторая — множеству В Декартово произведение множеств А и В обозначают А х В. Таким образом, А×В={(x,y)|x∈A˄y∈B}. Операцию нахождения декартова произведения множеств А и В называют декартовым умножением этих множеств. Если А и В — числовые множества, то элементами декартова произведения этих множеств будут упорядоченные пары чисел.

VI. Правила суммы и произведения

Обозначим число элементов конечного множества A символом n(A). Если множества А и В не пересекаются, то n(AUВ)= n(А) +n (В). Если множества А и В пересекаются, то n(А U В) = n (A) + n (В) — n (A ∩ В).

Число элементов декартова произведения множеств A и В подсчитывается по формуле n (А X В) = n (A) . n (В).

Правило подсчета числа элементов объединения непересекающихся конечных множеств в комбинаторике носит название прави-ла суммы, если элемент х можно выбрать k способами, а элемент у — m способами, причем ни один из способов выбора элемента х не совпадает со способом выбора элемента у, то выбор «х или у» можно осуществить k + m способами.

Правило подсчета числа элементов декартова произведения конечных множеств в комбинаторике носит название правила произведения: если элемент х можно выбрать k способами, а элемент y - m способами, то пару (х,y) можно выбрать km способами.

VII. Список использованных источников

    Асеев Г.Г. Абрамов О.М., Ситников Д.Э. Дискретная математика: Учебное пособие. - Ростов н/Д: «Феникс», Харьков: «Торсинг», 2003, -144с.

    Виленкин Н. Я. Алгебра. Учебное пособие для IX - X классов средних школ с математической специализацией, 1968

    Виленкин Н.Я. Рассказы о множествах. М.: Изд-во «Наука». - 1965. - 128с

    Диаграммы Эйлера - Венна.URL:http://studopedia.net/1_5573_diagrammi-eylera-venna.html

    Киреенко С.Г., Гриншпон И. Э. Элементы теории множеств (учебное пособие). - Томск, 2003. - 42 с.

    Куратовский К., Мостовский А. Теория множеств. - М.: Мир, 1970, - 416с.

Не помню, когда я впервые узнал про топологию, но меня эта наука сразу заинтересовала. Чайник превращается в бублик, сфера выворачивается наизнанку. Многие слышали про это. Но у тех, кто хочет углубиться в эту тему на более серьёзном уровне, часто возникают трудности. Особенно это относится к освоению самых начальных понятий, которые по своей сути очень абстрактны. Более того, многие источники, как будто специально стремятся запутать читателя. Скажем русская вики даёт весьма туманную формулировку того, чем занимается топология. Там говорится, что это наука изучающая топологические пространства . В статье про топологические пространства читатель может узнать, что топологические пространства - это пространства снабжённые топологией . Такие объяснения в стиле лемовских сепулек не очень проясняют суть предмета. Я попробую далее изложить основные базовые понятия в более ясной форме. В моей заметке не будет превращающихся чайников и бубликов, но будут сделаны первые шаги, которые позволят в конце концов научиться этой магии.

Впрочем, так как я не математик, а стопроцентный гуманитарий, то вполне возможно, что написанное ниже - враньё! Ну, или по крайней мере часть.

Впервые я написал эту заметку, как начало цикла статей о топологии, для своих гуманитарных друзей, но никто из них читать ее не стал. Исправленную и расширенную версию я решил выложить на хабр. Мне показалось, что здесь существует определенный интерес к этой теме и статей как раз такого рода еще не было. Заранее благодарен за все комментарии об ошибках и неточностях. Предупреждаю, что я использую много картинок.

Начнем с краткого повторения теории множеств. Думаю, большинство читателей хорошо с ней знакомы, но тем не менее напомню основы.

Итак, считается, что определения у множества нет и, что мы интуитивно понимаем, что это такое. Кантор говорил так: «Под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M)». Конечно, это просто иносказательное описание, а не математическое определение.
Теория множеств известна (прошу простить за каламбур) множеством удивительных парадоксов. Например . С ней также связан кризис математики в начале XX-го века.

Теория множеств существует в нескольких вариантах, таких как ZFC или NBG и других. Вариантом теории являетсятеория типов , которая весьма важна для программистов. Наконец, некоторые математики предлагает вместо теории множеств в качестве фундамента математики использовать теорию категорий, о которой много написано на Хабре. Теория типов и теория множеств описывают математические объекты как бы «изнутри», а теория категорий не интересуется их внутренним строением, а только как они взаимодействуют, т.е. даёт их «внешнюю» характеристику.
Для нас важны только самые начальные основы теории множеств.

Множества бывают конечными.

Бывают бесконечными. Например, множество целых чисел, которое обозначается буквой ℤ (или просто Z, если у вас на клавиатуре нет фигурных букв).

Наконец, есть пустое множество. Оно ровно одно во всей Вселенной. Имеется простое доказательство этого факта, но я не буду его здесь приводить.

Если множество бесконечно, оно бывает счетным . Счетные - те множества, элементы которых можно перенумеровать натуральными числами. Само множество натуральных чисел, как вы догадались, тоже счетно. А вот как можно пронумеровать целые числа.

С рациональными числами сложнее, но и они поддаются нумерации. Этот способ называется диагональным процессом и выглядит, как на картинке внизу.

Мы зигзагом движемся по рациональным числам, начиная с 1. При этом каждому числу, которое у нас получается, присваиваем четный номер. Отрицательные рациональные числа считаются тем же способом, только номера нечетные, начиная с 3. Ноль традиционно получает первый номер. Таким образом видно, что все рациональные числа можно пронумеровать. Все числа вроде 4,87592692976340586068 или 1,00000000000001, или -9092, или даже 42 получают свой номер в этой таблице. Тем не менее, сюда попадают не все числа. Например, √2 не получит номера. Когда-то это очень огорчило греков. Говорят, того парня, который открыл иррациональные числа, утопили.

Обобщением понятия размера для множеств является мощность . Мощность конечных множеств равна числу их элементов. Мощность бесконечных множеств обозначается еврейской буквой алеф с индексом. Самая маленькая бесконечная мощность-это мощность 0 . Она равна мощности счетных множеств. Как видим, таким образом, натуральных чисел, так же много, как и целых или рациональных. Странно, но факт. Следующая - мощность континуума . Она обозначается маленькой готической буквой с. Это мощность множества вещественных чисел ℝ, например. Существует гипотеза о том, что мощность континуума равна мощности 1 . Т.е., что это следующая после мощности счетных множеств мощность, и нет никакой промежуточной мощности между счетными множествами и континуумом.

Над множествами можно проводить различные операции и получать новые множества.

1. Множества можно объединять.

3. Можно искать пересечение множеств.

Собственно это все о множествах, что нужно знать для целей этой заметки. Теперь мы можем приступить к самой топологии.
Топология - это наука, которая изучает множества с определенной структурой. Эта структура также называется топологией.
Пусть у нас есть некоторое непустое множество S.
Пусть же у этого множества будет некоторая структура, которая описывается с помощью множества, которое мы назовем Т. Т представляет собой множество подмножеств множества S такое, что:

1. Само S и ∅ принадлежат T.
2. Любое объединение произвольных семейств элементов T принадлежит T.
3. Пересечение произвольного конечного семейства элементов T принадлежит T.

Если эти три пункта выполняются, то наша структура является топологией T на множестве S. Элементы множества T называются открытыми множествами на S в топологии T. Дополнением к открытым множествам являются замкнутые множества. Важно отметить, что если множество открыто, это еще не означает, что оно не замкнуто и наоборот. Кроме того в данном множестве относительно некоторой топологии могут быть подмножества, которые не являются ни открытыми, ни замкнутыми.

Приведем пример. Пусть у нас есть множество, состоящее из трех цветных треугольников.

Самая простая топология на нем называется антидискретной топологией . Вот она.

Эту топологию, также называют топологией слипшихся точек . Она состоит из самого множества и из пустого множества. Это действительно удовлетворяет аксиомам топологии.

На одном множестве можно задать несколько топологий. Вот еще одна очень примитивная топология, которая бывает. Она называется дискретной. Это топология, которая состоит из всех подмножеств данного множества.

А вот еще топология. Она задана на множестве из 7 разноцветных звезд S, которые я обозначил буквами. Убедитесь, что это топология. Я в этом не уверен, вдруг я пропустил, какое-то объединение или пересечение. На этой картинке должно быть само множество S, пустое множество, пересечения и объединения всех остальных элементов топологии также должны быть на картинке.

Пара из топологии и множества на котором она задана называется топологическим пространством .

Если в множестве много точек (не говоря уже о том, что их может быть бесконечно много), то перечислить все открытые множества может быть проблематично. Например, для дискретной топологии на множестве из трех элементов, надо составить список из 8 множеств. А для 4-элементного множества дискретная топология будет насчитывать уже 16, для 5 - 32, для 6 -64 и так далее. Для того, чтобы не перечислять все открытые множества используется как бы сокращенная запись - выписываются те элементы, объединения которых могут дать, все открытые множества. Это называется базой топологии. Например, для дискретной топологии пространства из трех треугольников - это будут три треугольника взятые в отдельности, потому, что объединяя их, можно получить все остальные открытые множества в данной топологии. Говорят, что база генерирует топологию. Множества, элементы которого генерируют базу, называют предбазой.

Ниже пример базы для дискретной топологии на множестве из пяти звезд. Как видите, в данном случае база состоит всего из пяти элементов, в то время как в топологии целых 32 подмножества. Согласитесь, использовать базу для описания топологии - гораздо удобнее.

Для чего нужны открытые множества? В каком-то смысле они дают представление о «близости» между точками и о различии между ними. Если точки принадлежат двум разным открытым множествам или если одна точка находится в открытом множестве, в котором не находится вторая, то они топологически различаются. В антидискретной топологии все точки в этом смысле неразличимы, они как бы слиплись. Наоборот, в дискретной топологии все точки имеют различие.

С понятием открытого множества неразрывно связано понятие окрестности . Некоторые авторы дают определение топологии не через открытые множества, а через окрестности. Окрестность точки p - это множество, которое содержит открытый шар с центром в этой точке. Например, на рисунке ниже показаны окрестности и не окрестности точек. Множество S 1 является окрестностью точки p, а множество S 2 нет.

Связь между открытым множеством и октестностью можно сформулировать так. Открытое множество - такое множество, каждый элемент которого имеет некоторую окрестность, лежащую в данном множестве. Или наоборот можно сказать, что множество открыто, если оно является окрестностью любой своей точки.

Все это самые базовые понятия топологии. Отсюда еще не ясно как выворачивать сферы наизнанку. Возможно в будущем, я смогу добраться и до такого рода тем (если сам разберусь).

UPD. Из-за неаккуратности моей речи, возникло некоторое недоумение относительно мощностей множеств. Я несколько исправил свой текст и здесь хочу дать пояснение. Кантор, создавая свою теорию множеств, ввел понятие мощности, которое позволяло сравнивать бесконечные множества. Кантор установил, что мощности счетных множеств (например, рациональных чисел) и континуума (например, вещественных чисел) различны. Он предположил, что мощность континуума является следующей после мощности счетных множеств т.е. равна алеф-один. Кантор пытался доказать эту гипотезу, но безуспешно. Позже стало ясно, что эту гипотезу нельзя ни опровергнуть, ни доказать.